From Principal Component Analysis to Deep Learning with De-Noising Variational Auto-Encoders

Dr. Daniel Guterding
daniel.guterding@gmail.com

February 5th, 2020

Lecture topic

Data sets with a large number of dimensions (variables) are a challenge for machine learning algorithms with respect to computational effort and memory usage.

The lecture will answer three closely related questions in this context:

1. How to reduce the number of dimensions in a sensible way?
2. How to distinguish relevant from irrelevant dimensions?
3. How to suppress noise in high-dimensional data?

Discussed algorithms

1. Principal Component Analysis (PCA)
2. De-Noising Variational Auto-Encoder (DVAE)

Principal Component Analysis - Foundations

- take \mathbf{N} data points with \mathbf{D} dimensions
- write single data point as column vector with $\underline{x_{i}}(\mathrm{D} \times 1)$
- matrix of all data points is $\underline{=}=\left(\underline{x_{1}}, \underline{x_{2}}, \ldots, \underline{x_{N}}\right)$ with $(\mathrm{D} \times N)$
- center of all data points is $\bar{\mu}=\frac{1}{N} \sum_{i=1}^{N} \underline{x_{i}}$
- centered data points are $\underline{\underline{\gamma}}=\left(\underline{y_{1}}, \underline{y_{2}}, \ldots, \underline{y_{N}}\right)$ with $\underline{y_{i}}=\underline{x_{i}}-\underline{\mu}$

Example

Principal Component Analysis - Foundations

- calculate covariance matrix $\underline{\underline{\Sigma}}=\underline{\underline{Y}} \underline{\underline{Y}}^{\top}$, real and symm. with ($\mathrm{D} \times \mathrm{D}$)
- solve eigenvalue equation $\underline{\underline{\Sigma}}=\underline{\underline{V}} \underline{\underline{\Lambda}} \underline{\underline{V}}^{\top}$, real eigvecs and eigvals
- diagonal variance matrix $\underline{\underline{\Lambda}}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{D}}\right)$
- eigenvectors $\underline{\underline{V}}=\left(\underline{v_{1}}, \underline{v_{2}}, \ldots, \underline{v_{\mathrm{D}}}\right)$ are orthogonal
- v_{i} is i-th principal component with variance λ_{i}
- principal components can be sorted by variance

Example

$$
\begin{aligned}
& \underline{\underline{Y}}=\left(\begin{array}{lll}
1.125 & 2.125 & -1.375 \\
2.225 & 4.325 & -2.575 \\
-3.975
\end{array}\right) \\
& \underline{\underline{\Sigma}}=\underline{\underline{Y}} \underline{\underline{Y}}^{\top}=\left(\begin{array}{ll}
11.1875 & 22.6875 \\
22.6875 & 46.0875
\end{array}\right) \\
& \underline{\underline{V}}=\left(\underline{v_{1}}, \underline{v_{2}}\right)=\left(\begin{array}{rr}
0.442 & -0.897 \\
0.897 & 0.442
\end{array}\right) \\
& \underline{\underline{\Lambda}}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{diag}(57.3,0.02)
\end{aligned}
$$

$4 / 19$

Principal Component Analysis - Foundations

- principal components form new coordinate system
- matrix of linear transformation is unitary $\underline{\underline{V}}^{\top}=\underline{\underline{V}}^{-1}$
- new data matrix $\underline{\underline{Z}}=\underline{\underline{V}}^{\top} \underline{\underline{Y}}$ with $(\mathrm{D} \times \mathrm{N})=(\mathrm{D} \times \mathrm{D}) \cdot(\mathrm{D} \times \mathrm{N})$
- variance is diagonal: $\underline{\underline{Z}} \underline{\underline{Z}}^{\top}=\underline{\underline{V}}^{\top} \underline{\underline{Y}} \underline{\underline{Y}}^{\top} \underline{\underline{V}}=\underline{\underline{V}}^{\top} \underline{\underline{\Sigma}} \underline{\underline{V}}=\underline{\underline{V}}^{\top} \underline{\underline{V}} \underline{\underline{\Lambda}} \underline{\underline{V}}^{\top} \underline{\underline{V}}=\underline{\underline{\Lambda}}$

Example

$$
\underline{\underline{Z}}=\left(\begin{array}{rrrr}
2.493 & 4.819 & -2.918 & -4.394 \\
-0.026 & 0.004 & 0.096 & -0.074
\end{array}\right)
$$

Principal Component Analysis - Recap

- principal component analysis finds new coordinate system
- transformation between old and new coordinates is linear
- new basis vectors are called principal components
- covariance matrix is diagonal in these coordinates
- principal components can be ordered by their contribution to the data set's total variance
- for data that almost lie on a line, the variance can be concentrated within a few principal components
- this allows for dimensionality reduction by discarding principal components with low associated variance

Principal Component Analysis - Dimensionality Reduction

- discarding principal component $\underline{v_{i}}$ discards variance λ_{i}
- easily done by erasing the i-th column in $\underline{\underline{V}}$
- usually $\underline{\nu_{\mathbf{i}}}$ with smallest $\lambda_{\mathbf{i}}$ discarded first
- new transformation $\underline{\underline{\tilde{V}}}=\left(\underline{v_{1}}, \underline{v_{2}}, \ldots, \underline{v_{\mathrm{D}-1}}\right)$ with $(\mathrm{D} \times(\mathrm{D}-1))$
- reduced data $\underline{\underline{\underline{Z}}}=\underline{\underline{V}}^{\top} \underline{\underline{Y}}$ with $((D-1) \times N)$
- discarding $\underline{v_{i}}$ erases \mathfrak{i}-th row in $\underline{\underline{Z}}$

Example

$$
\left.\begin{array}{l}
\underline{\underline{V}}=\left(\underline{v_{1}}, \underline{v_{2}}\right)=\left(\begin{array}{rr}
0.442 & -0.897 \\
0.897 & 0.442
\end{array}\right), \underline{\underline{\Lambda}}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{diag}(57.3,0.02) \\
\underline{\underline{Z}}=\underline{\underline{V}}^{\top} \underline{\underline{Y}}=\left(\begin{array}{rrr}
2.493 & 4.819 & -2.918 \\
-4.394 \\
-0.026 & 0.004 & 0.096
\end{array}-0.074\right.
\end{array}\right) \quad \begin{aligned}
& \underline{\tilde{V}}=\left(\underline{v_{1}}\right)=\binom{0.442}{0.897} \\
& \underline{\underline{\tilde{Z}}}=\underline{\underline{\tilde{V}}}^{\top} \underline{\underline{Y}}=\left(\begin{array}{llll}
2.493 & 4.819 & -2.918 & -4.394
\end{array}\right)
\end{aligned}
$$

Principal Component Analysis - Dimensionality Reduction

- transformation back to original coordinates with $\underline{\underline{\tilde{Y}}}=\underline{\underline{\underline{V}}} \underline{\underline{\underline{\tilde{Z}}}}=\underline{\underline{\underline{V}}} \underline{\underline{\underline{V}}}^{\top} \underline{\underline{Y}}$
- although $\underline{\underline{V}} \underline{\underline{V}}^{\top}=\underline{\underline{1}}$, we have $\underline{\underline{\underline{V}}} \underline{\underline{V}}^{\top} \neq \underline{\underline{1}}$
- information loss due to reduced dimension
- back-transformed data lie in subspace of lower dimension
Example

$$
\begin{aligned}
& \underline{\underline{Y}}=\left(\begin{array}{llll}
1.125 & 2.125 & -1.375 & -1.875 \\
2.225 & 4.325 & -2.575 & -3.975
\end{array}\right) \\
& \underline{\underline{V}}=\left(\underline{v_{1}}\right)=\binom{0.442}{0.897} \\
& \underline{\underline{\tilde{Z}}}=\underline{\underline{\tilde{V}}}^{\top} \underline{\underline{Y}}=\left(\begin{array}{llll}
2.493 & 4.819 & -2.918 & -4.394
\end{array}\right) \\
& \tilde{\underline{\tilde{V}}}=\underline{\underline{\tilde{V}}} \underline{\underline{Z}}=\underline{\tilde{V}^{\tilde{V}}} \underline{\underline{V}}^{\top} \underline{\underline{Y}}=\left(\begin{array}{llll}
1.101 & 2.129 & -1.289 & -1.941 \\
2.237 & 4.323 & -2.617 & -3.942
\end{array}\right)
\end{aligned}
$$

Principal Component Analysis - Problems

Non-Linear Data

- principal component analysis only works well for linear data
- introduction of non-linear variables would further increase dimensionality
- kernel methods are solution (kernel PCA)

Algorithm

- diagonalization of covariance matrix does not scale well with dimensionality D
- implementations usually use singular value decomposition
- same result, but relation to variance harder to understand

Principal Component Analysis - De-Noising of Images

- MNIST Numbers contains 70000 hand-written numbers from 0 to 9
- $28 \times 28=784$ pixel per image, values from 0 (white) to 255 (black)
- transform every image to column vector with dimension (784×1)
- 80 (about 10%) of principal components contain 90% of variance
- we introduce random noise into a derived data set
- contained variance converges slower than for original data
- noise leads to small reconstruction errors and lowered contrast

Artificial Neural Networks - Foundations

- weights $\boldsymbol{w}_{\mathfrak{i}}$ must be learned
- high computational effort, training best done on GPUs

Auto-Encoder - Foundations

- encoder compresses high-dim. input data into low-dim. representation vector \underline{z}
- decoder decompresses \underline{z} into high-dim. output data
- compression is lossy, depends on structure of encoder/decoder and dimension of \underline{z}
- principal component analysis is primitive Auto-Encoder; $\underline{\underline{V}}^{\top}$ as encoder, $\underline{\underline{\tilde{V}}}$ as decoder
- real Auto-Encoder uses neural network as encoder/decoder
- allows for better compression and reconstruction because of more complex structure

Auto-Encoder - Foundations

- training of encoder/decoder minimizes quadratic deviation between input and output
- representation vector \underline{z} lies in so-called latent space
- possible to generate and decode new \underline{z}, so-called generative model
- transformation is point-wise, points that are close in latent space not necessarily related
- no guarantee that similar \underline{z} lead to similar outputs
- insufficient reconstruction between training data
- Variational Auto-Encoder solves these problems

Variational Auto-Encoder - Foundations

- learns probability distribution $p(\underline{z})$
- input data are mapped to normal distribution with $\underline{\mu}$ and $\ln \underline{\underline{\Sigma}}$, no correlation
- $\underline{z}=\underline{\mu}+\underline{\underline{\sigma}} \underline{\varepsilon}, \underline{\underline{\sigma}}=\exp \left(\frac{1}{2} \ln \underline{\underline{\Sigma}}\right), \underline{\varepsilon} \sim \mathcal{N}(0,1)$
- Kullback-Leibler divergence measures deviation of distribution from $\mathcal{N}(0,1)$
- $\mathrm{D}_{\mathrm{KL}}=\frac{1}{2} \sum_{\mathrm{i}}\left(-1-\ln \left(\sigma_{i}^{2}\right)+\mu_{i}^{2}+\sigma_{i}^{2}\right) \geqslant 0$
- KLD is added to quadratic error, regularizes $\underline{\mu}$ and $\ln \underline{\underline{\Sigma}}$
- KLD centers \underline{z} of training data around $\underline{0}$
- similar input data, similar \underline{z}
- algorithm seems ad-hoc, but mathematically well-established

Algorithms Comparison - Latent Space

- use MNIST data set
- plots use classification info, model does not
- in all cases two-dimensional representation is learned
- numbers 4, 5, 6 particulary problematic
- AE and VAE also not perfect
- grouping of numbers is done best by VAE

Variational Auto-Encoder - Generative Learning

De-Noising Variational Auto-Encoder - Foundations

- train VAE with artifical noisy input data
- calculate reconstruction error w.r.t. original data
- encoder learns de-noising
- latent space in DVAE similar to VAE
- decoder unchanged w.r.t. VAE
- rigorous mathematical justification exists

De-Noising VAE - De-Noising of Images

- 32 dimensions in latent space
- PCA and VAE trained with original data
- DVAE shows best image reconstruction
- VAE very sensitive to noise

Summary

Principal Component Analysis

- linear transformation diagonalizes variance matrix
- principal comp. can be sorted by variance
- dimensionality reduction by discarding principal components with low variance

De-Noising Variational Auto-Encoder

- combination of neural networks as encoder/decoder
- learns representation of data as low-dim. probability distribution
- trained with artificial noisy data and known clean data as target

- generative model

Literature

- Hastie, Tibshirani, Friedman: The Elements of Statistical Learning
- Geron: Hands-On Machine Learning with Scikit-Learn and TensorFlow
- Goodfellow, Bengio, Courville: Deep Learning
- Foster: Generative Deep Learning
- Kingma, Welling: Auto-Encoding Variational Bayes, arXiv:1312.6114
- Im et al.: Denoising Criterion for Variational Auto-Encoding Framework, arXiv:1511.06406
- Doersch: Tutorial on Variational Autoencoders, arXiv:1606.05908
- Rolínek, Zietlow, Martius: Variational Autoencoders pursue PCA directions (by accident), arXiv:1812.06775

Training complexities of ML algorithms

- all listed complexities are provable upper bounds
- more efficient implementations may and do exist
- N : number of training samples
- D: number of features
- M: number of trees
- Linear regression: $\mathcal{O}\left(N D^{2}+D^{3}\right)$, because $\underline{\beta}=\left(\underline{\underline{X}} \underline{\underline{X}}^{\top}\right)^{-1} \underline{\underline{X}} \underline{Y}$
- Support Vector Machine: $\mathcal{O}\left(\mathrm{N}^{2} \mathrm{D}+\mathrm{N}^{3}\right)$
- Decision tree: $\mathcal{O}\left(\mathrm{N}^{2} \mathrm{D}\right)$
- Random forest: $\mathcal{O}\left(\mathrm{N}^{2} \mathrm{DM}\right)$
- Artificial Neural Network: no general proof available

MNIST Principal Components

