
From Principal Component Analysis to Deep Learning
with De-Noising Variational Auto-Encoders

Dr. Daniel Guterding
daniel.guterding@gmail.com

February 5th, 2020

1 / 19



Lecture topic

Data sets with a large number of dimensions (variables) are a
challenge for machine learning algorithms with respect to
computational effort and memory usage.

The lecture will answer three closely related questions in this context:

1. How to reduce the number of dimensions in a sensible way?

2. How to distinguish relevant from irrelevant dimensions?

3. How to suppress noise in high-dimensional data?

Discussed algorithms

1. Principal Component Analysis (PCA)

2. De-Noising Variational Auto-Encoder (DVAE)

2 / 19



Principal Component Analysis - Foundations
I take N data points with D dimensions
I write single data point as column vector with xi (D× 1)
I matrix of all data points is X = (x1, x2, . . . , xN) with (D×N)

I center of all data points is µ = 1
N

∑N
i=1 xi

I centered data points are Y = (y1,y2, . . . ,yN) with yi = xi − µ

Example

x1 =

(
4.0
4.0

)
, x2 =

(
5.0
6.1

)
, x3 =

(
1.5

−0.8

)
, x4 =

(
1.0

−2.2

)
, µ =

(
2.875
1.775

)

2 0 2 4 6
x1

2

0

2

4

6

x 2

4 2 0 2 4
y1

4

2

0

2

4

y 2

3 / 19



Principal Component Analysis - Foundations
I calculate covariance matrix Σ = Y YT , real and symm. with (D×D)

I solve eigenvalue equation Σ = V ΛVT , real eigvecs and eigvals
I diagonal variance matrix Λ = diag(λ1, λ2, . . . , λD)
I eigenvectors V = (v1, v2, . . . , vD) are orthogonal
I vi is i-th principal component with variance λi
I principal components can be sorted by variance

Example

Y =

(
1.125 2.125 −1.375 −1.875
2.225 4.325 −2.575 −3.975

)

Σ = Y YT =

(
11.1875 22.6875
22.6875 46.0875

)

V = (v1, v2) =

(
0.442 −0.897
0.897 0.442

)
Λ = diag

(
λ1, λ2) = diag

(
57.3, 0.02

) 4 2 0 2 4
y1

4

2

0

2

4

y 2

v 1

v 2

4 / 19



Principal Component Analysis - Foundations
I principal components form new coordinate system
I matrix of linear transformation is unitary VT = V−1

I new data matrix Z = VTY with (D×N) = (D×D) · (D×N)

I variance is diagonal: ZZT = VTY YTV = VTΣV = VTV ΛVTV = Λ

Example

Z =

(
2.493 4.819 −2.918 −4.394

−0.026 0.004 0.096 −0.074

)

4 2 0 2 4
y1

4

2

0

2

4

y 2

v 1

v 2

4 2 0 2 4
z1

0.4

0.2

0.0

0.2

0.4

z 2

5 / 19



Principal Component Analysis - Recap

I principal component analysis finds new coordinate system

I transformation between old and new coordinates is linear

I new basis vectors are called principal components

I covariance matrix is diagonal in these coordinates

I principal components can be ordered by their contribution to the data
set’s total variance

I for data that almost lie on a line, the variance can be concentrated
within a few principal components

I this allows for dimensionality reduction by discarding principal
components with low associated variance

6 / 19



Principal Component Analysis - Dimensionality Reduction
I discarding principal component vi discards variance λi
I easily done by erasing the i-th column in V
I usually vi with smallest λi discarded first
I new transformation Ṽ = (v1, v2, . . . , vD−1) with (D× (D− 1))

I reduced data Z̃ = Ṽ
T
Y with ((D− 1)×N)

I discarding vi erases i-th row in Z

Example

V = (v1, v2) =

(
0.442 −0.897
0.897 0.442

)
, Λ = diag

(
λ1, λ2) = diag

(
57.3, 0.02

)
Z = VTY =

(
2.493 4.819 −2.918 −4.394

−0.026 0.004 0.096 −0.074

)

Ṽ = (v1) =

(
0.442
0.897

)
Z̃ = Ṽ

T
Y =

(
2.493 4.819 −2.918 −4.394

)
7 / 19



Principal Component Analysis - Dimensionality Reduction
I transformation back to original coordinates

with Ỹ = Ṽ Z̃ = Ṽ Ṽ
T
Y

I although V VT = 1, we have Ṽ Ṽ
T 6= 1

I information loss due to reduced dimension

I back-transformed data lie in subspace of lower
dimension

Example

Y =

(
1.125 2.125 −1.375 −1.875
2.225 4.325 −2.575 −3.975

)

Ṽ = (v1) =

(
0.442
0.897

)
Z̃ = Ṽ

T
Y =

(
2.493 4.819 −2.918 −4.394

)
Ỹ = Ṽ Z = Ṽ Ṽ

T
Y =

(
1.101 2.129 −1.289 −1.941
2.237 4.323 −2.617 −3.942

)
8 / 19

4 2 0 2 4
z1

0.4

0.2

0.0

0.2

0.4

z 2

4 2 0 2 4
y1

4

2

0

2

4

y 2

v 1

v 2



Principal Component Analysis - Problems

Non-Linear Data

I principal component analysis only works
well for linear data

I introduction of non-linear variables would
further increase dimensionality

I kernel methods are solution (kernel PCA)

Algorithm

I diagonalization of covariance matrix does
not scale well with dimensionality D

I implementations usually use singular value
decomposition

I same result, but relation to variance harder
to understand

2 0 2
x

2

1

0

1

2

y
0 /2 3 /2 2

1.5

2.0

2.5

r

9 / 19



Principal Component Analysis - De-Noising of Images

I MNIST Numbers contains 70000 hand-written numbers from 0 to 9

I 28× 28 = 784 pixel per image, values from 0 (white) to 255 (black)

I transform every image to column vector with dimension (784× 1)

I 80 (about 10%) of principal components contain 90% of variance

I we introduce random noise into a derived data set

I contained variance converges slower than for original data

I noise leads to small reconstruction errors and lowered contrast

10 / 19

O
V

OR
80

VR
80

0 196 392 588 784
num of components

0

20

40

60

80

100

cu
m

ul
at

ed
 v

ar
ia

nc
e 

(%
)

original
noisy



Artificial Neural Networks - Foundations

I inspired by the structure of the brain

I layers of simple units with complex
connections

I allows for non-linear transformations

I complexity of network can be controlled

I unit performs weighted sum and
applies activation function

I output of unit is aout = g(b+
∑

i aiwi)

I activation function ReLU
g(x) = max(0, x) popular

I weights wi must be learned

I high computational effort, training best
done on GPUs

a1

Input
w1

a2 w2 Σ g

Activation
function

aout
Output

a3 w3

Weights

Bias
b

2 1 0 1 2
x

0

1

2

g(
x)

ReLU
Leaky ReLU
Sigmoid

11 / 19



Auto-Encoder - Foundations

I encoder compresses high-dim. input data
into low-dim. representation vector z

I decoder decompresses z into high-dim.
output data

I compression is lossy, depends on structure
of encoder/decoder and dimension of z

I principal component analysis is primitive

Auto-Encoder; Ṽ
T

as encoder, Ṽ as decoder

I real Auto-Encoder uses neural network
as encoder/decoder

I allows for better compression and
reconstruction because of more complex
structure

Encoder

Decoder

Representation

A
u
to
-E
n
co
d
e
r

Input

Output

12 / 19



Auto-Encoder - Foundations

I training of encoder/decoder minimizes
quadratic deviation between input and output

I representation vector z lies in so-called latent
space

I possible to generate and decode new z,
so-called generative model

I transformation is point-wise, points that are
close in latent space not necessarily related

I no guarantee that similar z lead to similar
outputs

I insufficient reconstruction between training
data

I Variational Auto-Encoder solves these problems

Encoder

Decoder

Representation

A
u
to
-E
n
co
d
e
r

Input

Output

13 / 19



Variational Auto-Encoder - Foundations

I learns probability distribution p(z)

I input data are mapped to normal
distribution with µ and lnΣ, no correlation

I z = µ+ σ ε, σ = exp
(
1
2 lnΣ

)
, ε ∼ N(0, 1)

I Kullback-Leibler divergence measures
deviation of distribution from N(0, 1)

I DKL = 1
2

∑
i

(
− 1 − ln(σ2i) + µ

2
i + σ

2
i

)
> 0

I KLD is added to quadratic error,
regularizes µ and lnΣ

I KLD centers z of training data around 0

I similar input data, similar z

I algorithm seems ad-hoc, but
mathematically well-established

2 1 0 1 2
z

0.0

0.5

1.0

p(
z)

14 / 19



Algorithms Comparison - Latent Space

I use MNIST data set

I plots use classification info, model does not

I in all cases two-dimensional representation is learned

I numbers 4, 5, 6 particulary problematic

I AE and VAE also not perfect

I grouping of numbers is done best by VAE

15 / 19



Variational Auto-Encoder - Generative Learning

16 / 19



De-Noising Variational Auto-Encoder - Foundations

I train VAE with artifical noisy input data

I calculate reconstruction error w.r.t. original data

I encoder learns de-noising

I latent space in DVAE similar to VAE

I decoder unchanged w.r.t. VAE

I rigorous mathematical justification exists

VAE

DVAE

Encoder

Decoder

z

z

Input Output Target

17 / 19



De-Noising VAE - De-Noising of Images
O

V
PC

A
VA

E
DV

AE

I 32 dimensions in latent space

I PCA and VAE trained with original data

I DVAE shows best image reconstruction

I VAE very sensitive to noise

18 / 19



Summary

Principal Component Analysis

I linear transformation diagonalizes variance
matrix

I principal comp. can be sorted by variance

I dimensionality reduction by discarding
principal components with low variance

De-Noising Variational Auto-Encoder

I combination of neural networks as
encoder/decoder

I learns representation of data as low-dim.
probability distribution

I trained with artificial noisy data and known
clean data as target

I generative model
19 / 19



Literature

I Hastie, Tibshirani, Friedman: The Elements of Statistical Learning

I Geron: Hands-On Machine Learning with Scikit-Learn and TensorFlow

I Goodfellow, Bengio, Courville: Deep Learning

I Foster: Generative Deep Learning

I Kingma, Welling: Auto-Encoding Variational Bayes, arXiv:1312.6114

I Im et al.: Denoising Criterion for Variational Auto-Encoding
Framework, arXiv:1511.06406

I Doersch: Tutorial on Variational Autoencoders, arXiv:1606.05908

I Roĺınek, Zietlow, Martius: Variational Autoencoders pursue PCA
directions (by accident), arXiv:1812.06775

20 / 19



Training complexities of ML algorithms

I all listed complexities are provable upper bounds

I more efficient implementations may and do exist

I N: number of training samples

I D: number of features

I M: number of trees

I Linear regression: O
(
ND2 +D3

)
, because β =

(
XXT

)−1
XY

I Support Vector Machine: O
(
N2D+N3)

I Decision tree: O
(
N2D)

I Random forest: O
(
N2DM)

I Artificial Neural Network: no general proof available

21 / 19



MNIST Principal Components

22 / 19


