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Lecture topic

Data sets with a large number of dimensions (variables) are a
challenge for machine learning algorithms with respect to
computational effort and memory usage.

The lecture will answer three closely related questions in this context:
1. How to reduce the number of dimensions in a sensible way?
2. How to distinguish relevant from irrelevant dimensions?

3. How to suppress noise in high-dimensional data?

Discussed algorithms

1. Principal Component Analysis (PCA)
2. De-Noising Variational Auto-Encoder (DVAE)
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Principal Component Analysis - Foundations

>
>

>
>

take N data points with D dimensions

write single data point as column vector with x; (D x 1)
matrix of all data points is X = (x1, X2, ..., xn) with (D x N)
center of all data points is pu = % Z]i\lzlﬁ

centered data points are Y = (y1,Y2, ..., yn) with yi = x4 —

Example
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Principal Component Analysis - Foundations

» calculate covariance matrix X :\:(lT, real and symm. with (D x D)

> solve eigenvalue equation £ = ¥é¥T real eigvecs and eigvals
» diagonal variance matrix A = diag(A1,A2,...,Ap)

> eigenvectors V. = (v, v, ..., vp) are orthogonal

>

Vi is i-th principal component with variance A;
» principal components can be sorted by variance

Example
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A = diag(A1, A2) = diag(57.3,0.02) "



Principal Component Analysis - Foundations

» principal components form new coordinate system
» matrix of linear transformation is unitary ¥T =v!

> new data matrix Z=VTY with (D x N) = (D x D) - (D x N)
> variance is diagonal: ZZ" =V'YY'V=VT'IV=VIVAVV=A

Example
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Principal Component Analysis - Recap

vVvyVvYyVvyy

v

principal component analysis finds new coordinate system
transformation between old and new coordinates is linear
new basis vectors are called principal components
covariance matrix is diagonal in these coordinates

principal components can be ordered by their contribution to the data
set’s total variance

for data that almost lie on a line, the variance can be concentrated
within a few principal components

this allows for dimensionality reduction by discarding principal
components with low associated variance
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Principal Component Analysis - Dimensionality Reduction

» discarding principal component v; discards variance A;
» easily done by erasing the i-th column in V

» usually vi with smallest A; discarded first
>
>

new transformation ! = (v1,v2,...,vp_1) with (D x (D —1))

reduced data Z = V' Y with (D —1) x N)
» discarding vy erases i-th row in Z

Example

0.442 —0.897 : :
V= (v, v2) = <0.897 0.442>, A = diag(A1, A2) = diag(57.3,0.02)

—0.026 0.004 0.096 —0.074

V= () = (g aor)

Z=V Y=(2493 4819 —2918 —4.394)

Z—VTY—< 2493 4819 —2.918 —4.394)
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Principal Component Analysis - Dimensionality Reduction

» transformation back to original coordinates 0.4
with ¥ = VZ = VV'y 0.2
~ o~ o
> although VVT =1, we have VV' #1 3 ootee——e—e
» information loss due to reduced dimension —0.21
» back-transformed data lie in subspace of lower =041 . _
dimension —4 -2 ZO 2 4
Example 4l ’
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~ ~T 4 2 0 2 4
L=V Y=(2493 4819 —2918 —4.394) n

- ~ ~T 1.101 2.129 —1.289 —1.941
Y=VZ=VV Y= (2.237 4323 —-2.617 —3.942)
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Principal Component Analysis - Problems

Non-Linear Data
» principal component analysis only works
well for linear data

» introduction of non-linear variables would
further increase dimensionality

> kernel methods are solution (kernel PCA)

Algorithm

» diagonalization of covariance matrix does
not scale well with dimensionality D

» implementations usually use singular value
decomposition

> same result, but relation to variance harder
to understand
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Principal Component Analysis - De-Noising of Images
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MNIST Numbers contains 70000 hand-written numbers from 0 to 9
28 x 28 = 784 pixel per image, values from 0 (white) to 255 (black)

transform every image to column vector with dimension (784 x 1)

cumulated variance (%)

80 (about 10%) of principal components contain 90% of variance
we introduce random noise into a derived data set

contained variance converges slower than for original data

vVvyVvyVvyYVvyyvyy

noise leads to small reconstruction errors and lowered contrast
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Artificial Neural Networks - Foundations

v

v

v

inspired by the structure of the brain

layers of simple units with complex
connections

allows for non-linear transformations
complexity of network can be controlled

unit performs weighted sum and
applies activation function

output of unit is aoyr = g(b+ ) ; aiw;)
activation function RelLU

g(x) = max(0, x) popular

weights w; must be learned

high computational effort, training best
done on GPUs
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Auto-Encoder - Foundations

>

>

encoder compresses high-dim. input data
into low-dim. representation vector z

decoder decompresses z into high-dim.
output data
compression is lossy, depends on structure
of encoder/decoder and dimension of z
principal component analysis is primitive

~T ~
Auto-Encoder; V' as encoder, V as decoder
real Auto-Encoder uses neural network
as encoder/decoder

allows for better compression and
reconstruction because of more complex
structure

Auto-Encoder

Input
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Output
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Auto-Encoder - Foundations

» training of encoder/decoder minimizes
quadratic deviation between input and output

» representation vector z lies in so-called latent

Auto-Encoder
'0‘
el
2
[}
3
g
' a.l

space
» possible to generate and decode new z, AM
so-called generative model Outputl

» transformation is point-wise, points that are
close in latent space not necessarily related

1.0

» no guarantee that similar z lead to similar 0 ® o
[ ]
outputs < 0.5

» insufficient reconstruction between training
data
0.0

» Variational Auto-Encoder solves these problems 0.0 05 10

Z1
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Variational Auto-Encoder - Foundations

1.0 A
» learns probability distribution p(z)
» input data are mapped to normal 8
distribution with p and In ; no correlation s0s
> z=pn+o0g, g:exp(%lné), e~N(0,1)
» Kullback-Leibler divergence measures O e ——
deviation of distribution from N(0, 1) ot 2
>DKL:%Zi(—l—ln(G%)ﬁ-Hgﬁ-O—%)20 1.0
» KLD is added to quadratic error,
regularizes p and In X °%8
» KLD centers z of training data around 0 & 054 * . ‘...'
» similar input data, similar z ©e
» algorithm seems ad-hoc, but
mathematically well-established 0.0 - n
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Algorithms Comparison - Latent Space

PCA

VAE

©ONOU A WNREO

» use MNIST data set

» plots use classification info, model does not

» in all cases two-dimensional representation is learned
» numbers 4, 5, 6 particulary problematic

» AE and VAE also not perfect

» grouping of numbers is done best by VAE
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Variational Auto-Encoder - Generative Learning
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De-Noising Variational Auto-Encoder - Foundations

vVvyVvyVvyYyvyy

train VAE with artifical noisy input data
calculate reconstruction error w.r.t. original data
encoder learns de-noising

latent space in DVAE similar to VAE

decoder unchanged w.r.t. VAE

rigorous mathematical justification exists

Input Output Target
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De-Noising VAE - De-Noising of Images
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» 32 dimensions in latent space
» PCA and VAE trained with original data

» DVAE shows best image reconstruction

» VAE very sensitive to noise
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Summary

Principal Component Analysis

. _ _ _ sy evz777/7/

> linear transformation diagonalizes variance @ ¢ 9 977 10 /1 / /
matrix 7499771111
» principal comp. can be sorted by variance ; :: ; ; :; _7., : : : ‘;
» dimensionality reduction by discarding 94997271111
principal components with low variance 99947711V 11
4233544

De-Noising Variational Auto-Encoder : 3‘ j 2233646
> o f | K Qb6éar238E66
combination of neural networks as Q662258866
encoder/decoder Lbéa2288BLEG

> learns representation of data as low-dim. beza2r2880606
probability distribution g g ’j g -g -g g g 8 g

> trained with artificial noisy data and known QP 45555500
clean data as target 0055555500

» generative model
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Training complexities of ML algorithms

VVYVYVY VVYVVYVYY

all listed complexities are provable upper bounds

more efficient implementations may and do exist

N: number of training samples

D: number of features

M.: number of trees

Linear regression: O(ND? + D3), because B = (ééT)_ XY
Support Vector Machine: O(N2D + N?3)

Decision tree: O(N?D)

Random forest: O(N?DM)

Artificial Neural Network: no general proof available
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MNIST Principal Components
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