From many-body physics to financial markets: sparse modeling for inverse problems

Dr. Daniel Guterding
daniel.guterding@gmail.com

September 5th, 2022

Density of states and Matsubara Green's function

- Electronic density of states describes behavior of material, e.g. spectroscopy
- Start with $\rho(E)$ from effective non-interacting theory
- Matsubara Green's function $G\left(i \omega_{n}\right)=\int_{-\infty}^{\infty} d E \frac{\rho(E)}{i \omega_{n}-E}$ with $\omega_{n}=(2 n+1) \pi / \beta, n \in \mathbb{Z}$

- Calculate interacting $\mathrm{G}_{\text {int }}\left(i \omega_{n}\right)$ using $G\left(i \omega_{n}\right)$ and Feynman diagrams
- Compare $\rho_{\text {int }}(E)$ to experiments
- How to obtain $\rho_{\text {int }}(E)$ from $\mathrm{G}_{\mathrm{int}}\left(\mathrm{i} \omega_{\mathrm{n}}\right)$?

Figures: Comp. Phys. Commun. 231, 114 (2018), JPSJ 89, 012001 (2020)

Terminal density and plain-vanilla option price

- Price for option with payoff $\psi(\mathrm{K}, \mathrm{x})$ and known terminal density $\phi(x)$:
$\operatorname{Pr}(K)=\int_{-\infty}^{\infty} d x \psi(K, x) \phi(x)$
- Call option: $\psi_{C}(K, x)=\max (0, x-K)$
- Put option: $\psi_{\mathrm{P}}(\mathrm{K}, \mathrm{x})=\max (0, \mathrm{~K}-\mathrm{x})$
- Bachelier model: normal $\phi(x)$
- Black-Scholes model: log-normal $\phi(x)$
- Simple models do not match the market
- How to imply continuous $\phi(x)$ from discrete set of market prices $\operatorname{Pr}(\mathrm{K})$?

Linearization and singular value decomposition

- $\operatorname{Pr}(\mathrm{K})=\int_{-\infty}^{\infty} \mathrm{d} x \psi(K, x) \phi(x)$
- M known prices
- N equidistant points in x -direction
- Trapezoidal approximation for integral

$>g_{i}(x)=\Delta x \cdot \psi_{C / P}\left(K_{i}, x\right)$

$$
\operatorname{Pr}=\left(\begin{array}{c}
\operatorname{Pr}_{1} \\
\vdots \\
\operatorname{Pr}_{M}
\end{array}\right)=\left(\begin{array}{ccccc}
\frac{1}{2} g_{1}\left(x_{1}\right) & g_{1}\left(x_{2}\right) & \cdots & g_{1}\left(x_{N-1}\right) & \frac{1}{2} g_{1}\left(x_{N}\right) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\frac{1}{2} g_{M}\left(x_{1}\right) & g_{M}\left(x_{2}\right) & \cdots & g_{M}\left(x_{N-1}\right) & \frac{1}{2} g_{M}\left(x_{N}\right)
\end{array}\right)\left(\begin{array}{c}
\phi\left(x_{1}\right) \\
\vdots \\
\phi\left(x_{N}\right)
\end{array}\right)=G \phi
$$

- In general G is $M \times N$ matrix, with $M \leqslant N$
- G is ill-conditioned, cannot invert $\operatorname{Pr}=\mathrm{G} \phi$ to get ϕ
- Analyze kernel with singular value decomposition: $G=U S V^{\top}$
- Singular values decay quadratically, makes inversion unstable

Figures: arXiv:2205.10865

SVD, optimization, regularization

- SVD: $\operatorname{Pr}=G \phi=U S V^{\top} \phi$
- $\operatorname{Pr}^{\prime}=\mathrm{U}^{\top} \operatorname{Pr}=S V^{\top} \phi=S \phi^{\prime}$
- S is diagonal, $\operatorname{Pr}_{\mathrm{i}}^{\prime}=\mathrm{S}_{\mathrm{ii}} \phi_{\mathrm{i}}^{\prime}=\mathrm{s}_{\mathrm{i}} \phi_{\mathrm{i}}^{\prime}$
- Keep Q singular values: $(\mathrm{U}, \mathrm{V}) \rightarrow(\tilde{\mathrm{U}}, \tilde{\mathrm{V}})$
- $\tilde{\mathrm{U}}$ is $\mathrm{M} \times \mathrm{Q}$ with $\mathrm{Q} \leqslant \min (M, \mathrm{~N})$, approximate $\mathrm{G} \approx \tilde{\mathrm{G}}=\tilde{\mathrm{U}} \tilde{S} \tilde{V}^{\top}$
- L_{1}-regularized optimization problem $F\left(\phi^{\prime} \mid \operatorname{Pr}, \lambda\right)=\frac{1}{2}\left\|\operatorname{Pr}-\tilde{U} \tilde{S} \phi^{\prime}\right\|_{2}^{2}+\lambda\left\|\phi^{\prime}\right\|_{1}$
- N discretization points for ϕ, but optimize only $\mathrm{Q} \leqslant \min (\mathrm{M}, \mathrm{N})$ entries of ϕ^{\prime}
- additional conditions $\phi_{\mathfrak{i}}=\left(\tilde{\mathrm{V}} \phi^{\prime}\right)_{\mathfrak{i}} \geqslant 0 \quad \forall \mathfrak{i}$

$$
\text { and } 1=\left(\frac{1}{2}\left(\phi_{1}+\phi_{N}\right)+\sum_{i=2}^{N-1} \phi_{i}\right) \Delta x
$$

Figures: arXiv:2205.10865

S\&P 500 index options

- Perfect reproduction of normal (Bachelier), mixtures of normal and log-normal (Black-Scholes) models
- One-month S\&P 500 index options on February 5th, 2018
- Calculate implied future distribution of stock index price
- Automatically correct implied volatility smiles
- Sensible inter- and extrapolation, currently no other general method available
- Performance easily tunable by choice of Q and N , execution time $\sim 10 \mathrm{~ms}$

Figures: arXiv:2205.10865

Summary

- Want to find density $\phi(x)$ in integral $\operatorname{Pr}(K)=\int_{-\infty}^{\infty} d x \psi(K, x) \phi(x)$
- Approximate integral using trapezoidal rule, write as matrix equation
- Perform SVD of kernel matrix
- Discard small singular values
- Reformulate as optimization problem in SVD-transformed domain
- Apply L_{1}-regularization to parameters
- General recipe for ill-conditioned inverse problems of this form
- Solution to the problem of volatility smile interpolation and extrapolation

Figures: arXiv:2205.10865

References

- Otsuki et al., J. Phys. Soc. Japan 89, 012001 (2020)
- Guterding \& Jeschke, Comp. Phys. Commun. 231, 114 (2018)
- Guterding, arXiv:2205.10865

