From many-body physics to financial markets: sparse modeling for inverse problems

Dr. Daniel Guterding
daniel.guterding@gmail.com

December 2nd, 2022

Density of states and Matsubara Green's function

- Electronic density of states describes behavior of material, e.g. spectroscopy
- Start with $\rho(E)$ from effective non-interacting theory
- Matsubara Green's function $G\left(i \omega_{n}\right)=\int_{-\infty}^{\infty} d E \frac{\rho(E)}{i \omega_{n}-E}$ with $\omega_{n}=(2 n+1) \pi / \beta, n \in \mathbb{Z}$

- Calculate interacting $\mathrm{G}_{\text {int }}\left(i \omega_{n}\right)$ using $G\left(i \omega_{n}\right)$ and Feynman diagrams
- Compare $\rho_{\text {int }}(E)$ to experiments
- How to obtain $\rho_{\text {int }}(E)$ from $\mathrm{G}_{\mathrm{int}}\left(\mathrm{i} \omega_{\mathrm{n}}\right)$?

Figures: Comp. Phys. Commun. 231, 114 (2018), JPSJ 89, 012001 (2020)

Analytic continuation of continuous-time QMC data

- Imaginary-time Green's function
$G(\tau)=\int_{-\infty}^{\infty} d \omega K(\tau, \omega) \rho(\omega)$ with $K(\tau, \omega)=\frac{e^{-\tau \omega}}{1+e^{-\beta \omega}}$
- Choose regression basis for $\rho(\omega)$
- Perform optimization with regularization parameter λ
- Overfitting leads to oscillations in spectral function
- Underfitting washes out features of spectral function
- Which regression basis?
- How to regularize in practice?
- Does optimization converge?
(a) imaginary time (input)

(b) real frequency (output)

Figures: PRE 95, 061302R (2017)

Discretization, SVD, Optimization

- Imaginary-time Green's function
$G(\tau)=\int_{-\infty}^{\infty} d \omega K(\tau, \omega) \rho(\omega)$ with $K(\tau, \omega)=\frac{e^{-\tau \omega}}{1+e^{-\beta \omega}}$
- Set energy cutoff $\Lambda \equiv \beta \omega_{\text {max }}$, Legendre basis for $\Lambda \rightarrow \infty$
- Discretize ω and τ into N vs. M slices
- Perform SVD on kernel matrix $K\left(\tau_{i}, \omega_{j}\right)=U S V^{\top}$
- $\mathrm{G}^{\prime}=\mathrm{U}^{\top} \mathrm{G}=\mathrm{SV}^{\top} \rho=S \rho^{\prime}$
- Singular values are weights, decay rapidly, apply cutoff
- Minimize squared error $\frac{1}{2}\left\|G-U S \rho^{\prime}\right\|_{2}^{2}+\lambda\left\|\rho^{\prime}\right\|_{1}$
Figures: PRE 95, 061302R (2017)
(a) imaginary time (input)

(b) real frequency (output)

Regularization

- Find ρ^{\prime} that minimizes squared error $\frac{1}{2}\left\|G-U S \rho^{\prime}\right\|_{2}^{2}+\lambda\left\|\rho^{\prime}\right\|_{1}$
- L_{1}-Regularization via λ (Lasso)
- λ facilitates compromise between accuracy of fit and smoothness of implied density (Elbow method)
- Perfect fit not desirable due to noise
(b) real frequency (output)

λ

Figures: PRE 95, 061302R (2017), JPSJ 89, 012001 (2020)

Preliminary summary

- Simple, fast and reliable method for analytic continuation of noisy data
- Elbow method yields best possible solution given the noise level
- Regularized optimization algorithm widely used in machine learning
- Physical properties of sparse basis well understood (intermediate representation)
- Extensions to two-particle propagators are being studied
- Optimized implementation available, Comp. Phys. Commun. 240, 181 (2019)

Figures: JPSJ 89, 012001 (2020)

Option price vs. volatility interpolation and extrapolation

- How to interpolate option prices?
- Interpolation in prices directly?
- Interpolation in implied volatility?
- Which conditions must prices fulfill?
- Which conditions for implied volatility?
- How to extrapolate implied volatility?
- How to get around these issues?

Terminal density and plain-vanilla option price

- Price for option with payoff $\psi(\mathrm{K}, \mathrm{x})$ and known terminal density $\phi(x)$:
$\operatorname{Pr}(K)=e^{-r \tau} \int_{-\infty}^{\infty} d x \psi(K, x) \phi(x)$
- Call option: $\psi_{C}(K, x)=\max (0, x-K)$
- Put option: $\psi_{\mathrm{P}}(\mathrm{K}, \mathrm{x})=\max (0, \mathrm{~K}-\mathrm{x})$
- Bachelier model: normal $\phi(x)$
- Black-Scholes model: log-normal $\phi(x)$
- Simple models do not match the market
- How to imply continuous $\phi(x)$ from discrete set of market prices $\operatorname{Pr}(\mathrm{K})$?

Linearization and singular value decomposition

- $\operatorname{Pr}(K)=e^{-r \tau} \int_{-\infty}^{\infty} d x \psi(K, x) \phi(x)$
- M known prices
- N equidistant points in x -direction
- Trapezoidal approximation for integral

$>g_{i}(x)=\Delta x \cdot e^{-r \tau} \psi_{C / P}\left(K_{i}, x\right)$

$$
\operatorname{Pr}=\left(\begin{array}{c}
\operatorname{Pr}_{1} \\
\vdots \\
\operatorname{Pr}_{M}
\end{array}\right)=\left(\begin{array}{ccccc}
\frac{1}{2} g_{1}\left(x_{1}\right) & g_{1}\left(x_{2}\right) & \cdots & g_{1}\left(x_{N-1}\right) & \frac{1}{2} g_{1}\left(x_{N}\right) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\frac{1}{2} g_{M}\left(x_{1}\right) & g_{M}\left(x_{2}\right) & \cdots & g_{M}\left(x_{N-1}\right) & \frac{1}{2} g_{M}\left(x_{N}\right)
\end{array}\right)\left(\begin{array}{c}
\phi\left(x_{1}\right) \\
\vdots \\
\phi\left(x_{N}\right)
\end{array}\right)=G \phi
$$

- In general G is $M \times N$ matrix, with $M \leqslant N$
- G is ill-conditioned, cannot invert $\mathrm{Pr}=\mathrm{G} \phi$ to get ϕ
- Analyze kernel with singular value decomposition: $G=U S V^{\top}$
- Singular values decay quadratically, makes inversion unstable

SVD, optimization, regularization

- SVD: $\operatorname{Pr}=G \phi=U S V^{\top} \phi$
- $\operatorname{Pr}^{\prime}=\mathrm{U}^{\top} \operatorname{Pr}=S V^{\top} \phi=S \phi^{\prime}$
- S is diagonal, $\operatorname{Pr}_{\mathrm{i}}^{\prime}=\mathrm{S}_{\mathrm{ii}} \phi_{\mathrm{i}}^{\prime}=\mathrm{s}_{\mathrm{i}} \phi_{\mathrm{i}}^{\prime}$
- Keep Q singular values: $(\mathrm{U}, \mathrm{V}) \rightarrow(\tilde{\mathrm{U}}, \tilde{\mathrm{V}})$
- $\tilde{\mathrm{U}}$ is $\mathrm{M} \times \mathrm{Q}$ with $\mathrm{Q} \leqslant \min (M, \mathrm{~N})$, approximate $\mathrm{G} \approx \tilde{\mathrm{G}}=\tilde{\mathrm{U}} \tilde{S}^{\top} \tilde{V}^{\top}$
- L_{1}-regularized optimization problem $F\left(\phi^{\prime} \mid \operatorname{Pr}, \lambda\right)=\frac{1}{2}\left\|\operatorname{Pr}-\tilde{U} \tilde{S} \phi^{\prime}\right\|_{2}^{2}+\lambda\left\|\phi^{\prime}\right\|_{1}$
- N discretization points for ϕ, but optimize only $\mathrm{Q} \leqslant \min (\mathrm{M}, \mathrm{N})$ entries of ϕ^{\prime}
- additional conditions $\phi_{\mathfrak{i}}=\left(\tilde{\mathrm{V}} \phi^{\prime}\right)_{\mathfrak{i}} \geqslant 0 \quad \forall \mathfrak{i}$

$$
\text { and } 1=\left(\frac{1}{2}\left(\phi_{1}+\phi_{N}\right)+\sum_{i=2}^{N-1} \phi_{i}\right) \Delta x
$$

Figures: arXiv:2205.10865

Normal model (Bachelier)

- Use analytical formula for option price
- Density is known analytically
- Get implied density from SVD procedure
- Regularization parameter λ
- Plot RMSE $\chi^{2}=\frac{1}{2}\left\|\operatorname{Pr}-\tilde{U} \tilde{S} \phi^{\prime}\right\|_{2}^{2}$
- Compare exact and implied density using Bhattacharyya distance
$d_{B}(p, q)=-\ln \left[\int_{-\infty}^{\infty} d x \sqrt{p(x) q(x)}\right]$
- Plateau in RMSE $\chi^{2}(\lambda)$
- Too strong regularization increases error
- Regularization makes density smooth
- Elbow method

Figures: arXiv:2205.10865

Log-Normal model (Black-Scholes)

- Analytical formula for option price
- Density is known analytically
- Elbow method works as usual
- Accuracy of density reproduction lower than for normal models
- Probably due to scipy implementation of log-normal PDF vs. CDF
- Too strong regularization leads to extreme broadening of density

Figures: arXiv:2205.10865

Mixture of normal models

- Linear combination of normal models
- Price is linear combination of prices for component models
- Multimodal models challenging for most other methods
- Reproduced without problems by our SVD method
- Elbow method works in error and Bhattacharyya distance domain

- Too strong regularization removes essential features

Figures: arXiv:2205.10865

De-arbitraging of a mixture model with arbitrage

- Linear combination of normal models with a negative coefficient
- Analytical formula for option price
- Model 'density' is partly negative
- Bhattacharyya distance is questionable measure, original model not really a density
- Perfect agreement not desirable here
- Obvious de-arbitraging in density domain, but not in implied volatility domain

Figures: arXiv:2205.10865

EUR／USD options：Implied Volatility

 ロロロロロロロロ －응n으우 नnNNmmyt inOnginolno
 ㅁㅁㅁㅁㅁㅁㅁㅁㅁㄴ
 oinoinoinoln サ寸mminNrin

EUR/USD options: Implied Density

S\&P 500 index options

- Perfect reproduction of normal (Bachelier), mixtures of normal and log-normal (Black-Scholes) models
- One-month S\&P 500 index options on February 5th, 2018
- Calculate implied future distribution of stock index price
- Automatically correct implied volatility smiles
- Sensible inter- and extrapolation, currently no other general method available
- Performance easily tunable by choice of Q and N , execution time $\sim 10 \mathrm{~ms}$

Figures: arXiv:2205.10865

17 / 18

Summary

- Want to find density $\phi(x)$ in integral $\operatorname{Pr}(K)=e^{-r \tau} \int_{-\infty}^{\infty} d x \psi(K, x) \phi(x)$
- Approximate integral using trapezoidal rule, write as matrix equation
- Perform SVD of kernel matrix
- Discard small singular values
- Reformulate as optimization problem in SVD-transformed domain
- Apply L_{1}-regularization to parameters
- Solution to the problem of volatility smile interpolation and extrapolation
- General recipe for ill-conditioned inverse problems of this form

Figures: arXiv:2205.10865

References

- Guterding \& Jeschke, Comp. Phys. Commun. 231, 114 (2018)
- Otsuki et al., J. Phys. Soc. Japan 89, 012001 (2020)
- Otsuki et al., Phys. Rev. E 95, 061302R (2017)
- Chikano et al., Comp. Phys. Commun. 240, 181 (2019)
- Guterding, arXiv:2205.10865

