Topologically non-trivial electronic and magnetic states in doped copper Kagome lattices

Daniel Guterding, Harald O. Jeschke, Roser Valentí Institut für Theoretische Physik

November 27, 2015

- 1 Introduction to Quantum Spin Hall and Quantum Anomalous Hall effect
- 2 Introduction to Spin-Liquids
- 3 Current status of copper Kagome materials
- 4 Suggestions for chemical modifications
- 5 Stability analysis for proposed crystal structures
- 6 Parametrization of Heisenberg Hamiltonians
- 7 Spin-Liquid in Barlowite
- Quantum Spin Hall effect and Quantum Anomalous Hall effect in Herbertsmithite

Topological insulators: introduction

- topological insulator fundamentally different from trivial insulator
- insulating bulk
- gapless surface states protected by time-reversal symmetry
- robust against disorder, weak interactions, etc.
- dissipation-free transport through surface states

Topological insulators: computational aspects

- time-reversal invariance $E(\vec{k}) = E(-\vec{k})$
- Kramer's theorem: time-reversal symmetry → twofold degeneracy
- connectivity between time-reversal invariant points Γ_i matters
- take product of parity eigenvalues for occupied bands

$$\delta_{i} = \prod_{m=1}^{N} \xi_{2m}(\Gamma_{i})$$

$$(-1)^{\nu_{0}} = \prod_{i=1}^{8} \delta_{i}; \rightarrow \nu_{0}; (\nu_{1}, \nu_{2}, \nu_{3})$$

$$(-1)^{\nu_{k}} = \prod_{n_{k}=1; n_{j\neq k}=0,1} \delta_{i=(n_{1}n_{2}n_{3})}$$

Fu, Kane, PRB 76, 045302 (2007); Hasan, Kane, RMP 82, 3045 (2010) 4 / 24

Topological insulators: application

- in QAH insulator all currents are spin-polarized → spintronics
- $\rho_{\chi\chi} = 0$ at zero field for QAHE
- Majorana zero modes (non-abelian anyons) at TI-SC interface
- braiding records history of the system
- fault-tolerant quantum computer

 Wilczek, Nat. Phys. 5, 614 (2009); Chang et al., Nat. Mater. 14, 473 (2015)

 Das Sarma et al., Quantum Information 1, 15001 (2015); van Heck et al., Phys. Scr. T164, 014007 (2015)

 5/24

Quantum spin-liquids: introduction

- frustration leads to degenerate ground state
- highly correlated wellformed local moments, but no static order (liquid-like)
- no spontaneous symmetry-breaking
- described by lattice covered with valence bonds
- static valence bonds give valence bond solid (VBS)
- superposition gives resonating valence bond (RVB) state → QSL

Lee, Science 321, 1306 (2008); Balents, Nature 464, 199 (2010) 6 / 24

Quantum spin-liquids: excitations

- usual excitations are electron-like (S = 1/2, q = ±e) or magnon-like (S = 1, q = 0)
- fractionalized excitations in QSL: spinons (S = 1/2, q = 0)
- spinons can be gapped or gapless
- probe spinons with thermodynamics, neutrons, etc.

Lee, Science 321, 1306 (2008); Balents, Nature 464, 199 (2010) 7 / 24

Herbertsmithite [ZnCu₃(OH)₆Cl₂]: spin-liquid candidate on the kagome lattice

- kagome lattice of Cu 3d⁹ (Cu²⁺) ions
- Mott insulator
- \blacksquare antiferromagnetic NN exchange $J_1=182.4~\text{K}$
- \blacksquare various other couplings $J_{\mbox{\scriptsize i}} < 7~\mbox{K}$
- no magnetic order down to 50 mK

```
[Helton et al., PRL 98, 107204 (2007)]
```

 neutron experiments see continuum of (fractionalized) excitations

[Han et. al, Nature 492, 406 (2012)]

 Cu-Zn antisite-disorder of a few percent, some studies claim only Zn site disorder

Jeschke, Salvat-Pujol, Valentí, PRB 88, 075106 (2013) 8 / 24

Ga-Herbertsmithite $[GaCu_3(OH)_6Cl_2]$: predicted exotic ferromagnet or superconductor

- substitute Zn²⁺ by Ga³⁺
- electron doping moves Fermi level to Dirac point
- Dirac metal robust in presence of correlations (DCA)
- vary Zn:Ga ratio to obtain intermediate electron doping
- competition between FM and f-wave SC predicted

Mazin, Jeschke, Lechermann, Lee, Fink, Thomale, Valentí, Nat. Commun. 5, 4261 (2014) 9 / 24

Barlowite $[Cu_4(OH)_6FBr]$: kagome lattice antiferromagnet

- kagome lattice of Cu²⁺ ions
- Cu²⁺ also between kagome layers
- antiferromagnetic Mott insulator
- AFM kagome exchange $J_3 = 178 \text{ K}$
- FM interlayer exchange $J_1 = -205 \text{ K}$
- remove interlayer coupling for QSL

Jeschke, Salvat-Pujol, Gati, Hoang, Wolf, Lang, Schlueter, Valentí, PRB 92, 094417 (2015) 10 / 24

Chemical modifications of Barlowite and Herbertsmithite

- we investigate
 - A-Herbertsmithite $[ACu_3(OH)_6Cl_2]$ and A-Barlowite $[ACu_3(OH)_6FBr]$
- we propose dopants for realizing QAHE, QSHE and QSL
- hole-doping (QAHE): Li⁺, Na⁺
- electron-doping (QSHE): Al³⁺, Ga³⁺, In³⁺, Sc³⁺, Y³⁺
- isoelectronic doping (QSL): Mg²⁺, Ca²⁺, Zn²⁺, Cd²⁺, Hg²⁺
- for all proposed compounds we analyse the stability of crystal structures
- Is kagome lattice distorted upon doping?

Preparation and analysis of crystal structures

structure preparation and relaxation

- replace interlayer site starting from Herbertsmithite/Barlowite
- density functional theory (DFT) calculations, GGA-PBE functional
- GPAW code, projector-augmented wave (PAW) basis, 1000 eV plane-wave cutoff
- unit cell shape and internal coordinates relaxed until forces < 10 meV/Å</p>

stability tests for $ACu_3(OH)_6Cl_2$ and $ACu_3(OH)_6FBr$

- 1 does the dopant go in at all?
- 2 does the dopant like the kagome environment better?
- 3 what about vacancies instead of A?
- 4 what about Cu impurities instead of A?

Formation energies

- total energies from full-potential local orbital (FPLO) code
- model growth process by solid state reaction
- compare energies of ACu₃(OH)₆Cl₂ + Cu to 2×Cu₂(OH)₃Cl + A
- dopant metal energies from crystals, e.g. fcc-Cu
- formation energy is defined as $E_{form} = E_{AH} + E_{Cu} (E_{C} + E_{A})$
- negative formation energy $\rightarrow ACu_3(OH)_6Cl_2$ is formed
- positive formation energy → Cu₂(OH)₃Cl is formed

Doping Energies

- evaluate energies of various defects, fully relaxed structures
- dopant A on kagome site and Cu on interlayer Cu(ACu₂)(OH)₆Cl₂
- compare energy directly to ACu₃(OH)₆Cl₂
- vacancy structure A_{0.66}Cu₃(OH)₆Cl₂
- impurity structure A_{0.66}Cu_{3.33}(OH)₆Cl₂
- doping energy: $E_{dop} = E_{AH} + y \cdot E_{Cu} (E_{AHM} + x \cdot E_A)$, where E_{AHM} belongs to $A_{1-x}Cu_{3+y}(OH)_6Cl_2$

Summary of formation and doping energies

- variety of materials energetically possible
- vacancies and large fractions of Cu impurites irrelevant
- interlayer site favors small dopants
- hole-doped Li-Herbertsmithite stable
- various electron doped materials stable
- Mg-Barlowite strongly favors interlayer doping, probably reduced disorder

case	A-herbertsmithite,A=	Li^{1+}	Na^{1+}	Mg^{2+}	Ca^{2+}	Zn^{2+}	Cd^{2+}	Hg^{2+}	Sc^{3+}	Y^{3+}	Al^{3+}	Ga^{3+}	In^{3+}
1	$ACu_3(OH)_6Cl_2$	-2.660	-2.517	-5.333	n/a	-2.082	-1.461	n/a	-7.300	-7.144	-6.257	-2.939	-3.080
2	$ACu_3(OH)_6Cl_2$	-0.041	+0.257	-0.421	n/a	-0.261	+0.128	n/a	-0.372	+0.043	-1.101	-0.736	-0.203
3	$A_{0.66}Cu_3(OH)_6Cl_2$	-0.847	-0.735	-1.689	n/a	-0.694	n/a	n/a	-2.481	-2.398	-2.141	-1.176	-1.062
4	$A_{0.66}Cu_{3.33}(OH)_6Cl_2$	-1.497	-1.350	-2.308	n/a	-1.321	n/a	n/a	-3.019	-2.878	-2.659	-1.711	-1.585
	A-barlowite, $A =$												
1	ACu ₃ (OH) ₆ FBr	-2.860	-2.247	-5.089	-5.808	-2.074	-1.420	+1.317	-7.498	-7.400	-5.605	-2.895	-2.919
2	$ACu_3(OH)_6FBr$	-0.322	+0.047	-0.994	-0.012	-0.367	+0.183	+1.282	-0.738	-0.336	-0.555	-0.363	-0.276
	ionic radius in pm	76	102	72	100	74	95	102	75	90	54	62	80

Guterding, Jeschke, Valentí, arXiv:1511.05686 15 / 24

Doping energies for small concentrations

- Herbertsmithite very stable against excess copper on interlayer site
- Herbertsmithite susceptible to excess dopants in kagome plane
- more work needed to understand impurity concentration, arrangement, etc.
- solid solution
 Ga_xZn_{1-x}Cu₃(OH)₆Cl₂
 should exist

A =	Zn^{2+}	Mg^{2+}
$A_{0.83}Cu_{3.17}(OH)_6Cl_2$	-0.464	-0.831
$A_{1.17}Cu_{2.83}(OH)_6Cl_2$	+0.210	+0.803

Heisenberg model for Mg-Barlowite

- DFT+U calculation with U = 6 eV and J_H = 1 eV on Cu 3d
- map energies of DFT spin-configurations to Heisenberg model
- AFM kagome coupling $J_1 = 226 \text{ K}$
- interlayer coupling $J_2 = 13.4 \text{ K}$
- $J_2/J_1 = 0.06$
- spin-liquid predicted for $|J_2/J_1| < 0.15$ [Götze, Richter, arXiv:1510:04898]
- Mg-Barlowite is likely a quantum spin-liquid with low anti-site disorder

Heisenberg model for Li-Herbertsmithite

- DFT+U calculation with U = 6 eV and J_H = 1 eV on Cu 3d
- large FM kagome coupling J₁ = −544 K
- negligible interplane couplings
- $\label{eq:constraint} \begin{tabular}{ll} \b$
- $J_i = \{-544, 39, -50\}$ K and $z_i = \{4, 4, 6\} \rightarrow T_C \approx 1160$ K
- Li-Herbertsmithite is a very robust ferromagnet

Electronic properties of Li-Herbertsmithite

- Ga-Herbertsmithite is 4/3 filled, $\{\uparrow 2/3, \downarrow 2/3\}$
- Li-Herbertsmithite is 2/3 filled FM, $\{\uparrow 2/3, \downarrow 0\}$
- FM Dirac metal is suspicious of QAHE
- SOC opens gap at Dirac point
- check topological indices, parity eigenvalues from DFT
- ν_0 ; $(\nu_1, \nu_2, \nu_3) = 0$; (111)
- QAHE on (001) surface

Surface termination of Herbertsmithite

- ν₀; (ν₁, ν₂, ν₃) = 0; (111) is stack of 2D systems
- (001) termination has edge of kagome layer at surface
- termination influences details of surface bands, not qualitative physics
- surface states are generic in Herbertsmithite system
- doping only controls Fermi level
- electron doped-materials show
 QSHE, two spins at Fermi level
- Barlowite bands are topologically trivial, additional band crossings

How to calculate surface states

- full-relativistic DFT calculations, projective Wannier functions
- tight binding model for Cu states $(n,j,m_j) = (3,5/2,\pm 5/2)$
- $\label{eq:minimum number of layers to allow bulk-surface distinction N \sim 20$
- diagonalization effort grows with N³
- always two surfaces in TB slab, experiment observes one at a time
- some authors just erase bands from the dual surface (justified, but ugly)
- proper way to calculate surface states: Green's functions

State on the surface of Herbertsmithite

State on the dual surface of Herbertsmithite

Guterding, Jeschke, Valentí, arXiv:1511.05686 23 / 24

Summary and outlook

Summary

- investigated stability of a range of new copper kagome materials
- all materials feature strong electronic correlations
- substitution of interlayer ions offers tunability
- Mg-Barlowite is a new spin-liquid candidate
- Li-Herbertsmithite shows the quantum anomalous Hall effect
- (Al, Ga, In, Sc)-Herbertsmithite show the quantum spin Hall effect
 preprint available: arXiv:1511.05686

Outlook

- correlation effects beyond DFT
- material synthesis

Backup slides

Test for Green's function code: crystalline topological insulator

