Superconductivity beyond the dimer model in 2D organic charge transfer salts

Michaela Altmeyer, Daniel Guterding, Harald O. Jeschke, and Roser Valentí Institut für Theoretische Physik

March 5, 2015

Organic charge transfer salts: Crystal structure and properties of $(ET)_2X$

- ET = BEDT-TTF
 - = bis(ethylenedithio)tetrathiafulvalene is the electron donor
- X is the electron acceptor (e.g. Cu(NCS)₂)
- we concentrate on κ-(ET)₂X salts
- AFI to SC transition with pressure or variation of X

Organic charge transfer salts: Electronic structure of κ -(ET)₂X

- two donor molecules transfer in total one electron to the acceptor X
- two-dimensional electronic structure in the ET-plane
- four ET molecules in the unit cell, 3/4 filled four-band model
- effective model only describes dimers of ET molecules, 1/2 filled two-band model

Figure : Ferber, Foyevtsova, Jeschke, Valentí, PRB **89**, 205106 (2014)

Symmetry of superconducting pairing in κ -(ET)₂X

Ab-initio calculations

 full potential local orbital (FPLO) code
molecular orbital models from projective Wannier functions

Superconductivity calculations

RPA spin-fluctuation pairing

Bickers, Scalapino, White, PRL 62, 961 (1989)

Graser, Maier, Hirschfeld, Scalapino, New J. Phys. 11, 025016 (2009)

 extract pairing symmetry and relative strength

 d_{xy} from experiment and theory 4 /

Competing pairing symmetries in κ -(ET)₂X

see also Schmalian, PRL 81, 4232 (1998); Kuroki et al., PRB 65, 100516(R) (2002)

Material dependence of T_c in κ -(ET)₂X

- λ measures pairing strength
- U is material dependent
- feature rich spin-susceptibility not discussed in previous work

Summary

- we derived ab-initio models for many κ-phase materials
- RPA spin-fluctuation pairing yields $s_{\pm}/d_{x^2-y^2}$ or d_{xy} gap
- material dependence of T_c comes out correctly
- no simple dependence on microscopic parameters

Altmeyer, Guterding, Jeschke, Valentí, to be published

Conversion from four-band to dimer model

Tight binding+RPA formalism in a nutshell

$$\begin{split} \chi_{st}^{pq}(\vec{q}) &= -\frac{1}{N} \sum_{\vec{k},\mu,\nu} a_{\mu}^{s}(\vec{k}) a_{\mu}^{p*}(\vec{k}) a_{\nu}^{q}(\vec{k}+\vec{q}) a_{\nu}^{t*}(\vec{k}+\vec{q}) \frac{f(E_{\nu}(\vec{k}+\vec{q})) - f(E_{\mu}(\vec{k}))}{E_{\nu}(\vec{k}+\vec{q}) - E_{\mu}(\vec{k})} \\ & \left[(\chi_{spin}^{RPA})_{st}^{pq} \right]^{-1} = [\chi_{st}^{pq}]^{-1} - (U_{spin})_{st}^{pq} \\ \Gamma_{st}^{pq}(\vec{k},\vec{k}') &= \left[\frac{3}{2} U_{s} \, \chi_{s}^{RPA}(\vec{k}-\vec{k}') \, U_{s} + \frac{1}{2} U_{s} - \frac{1}{2} U_{c} \, \chi_{c}^{RPA}(\vec{k}-\vec{k}') U_{c} + \frac{1}{2} U_{c} \right]_{ps}^{tq} \\ \Gamma_{ij}(\vec{k},\vec{k}') &= \sum_{stpq} a_{i}^{t*}(-\vec{k}) a_{i}^{s*}(\vec{k}) \text{Re} \left[\Gamma_{st}^{pq}(\vec{k},\vec{k}') \right] a_{j}^{p}(\vec{k}') a_{j}^{q}(-\vec{k}') \\ -\sum_{j} \oint_{C_{j}} \frac{dk'_{\parallel}}{2\pi} \frac{1}{4\pi\nu_{F}(\vec{k}')} \left[\Gamma_{ij}(\vec{k},\vec{k}') + \Gamma_{ij}(\vec{k},-\vec{k}') \right] g_{j}(\vec{k}') = \lambda_{i}g_{i}(\vec{k}) \end{split}$$

Graser, Maier, Hirschfeld, Scalapino, New Journal of Physics 11, 025016 (2009)

Other interesting talks

- talk after next one : Electronic structure of a dual-layered organic charge transfer salt, Harald O. Jeschke
- Z5.00004 : Generalized bandstructure unfolding method, Friday 11:15 AM, Milan Tomić

Summary of superconductivity calculations

- feature rich spin-susceptibility
- RPA spin-fluctuation pairing yields $s_{\pm}/d_{x^2-y^2}$ or d_{xy} gap
- material dependence of T_c comes out correctly
- complicated dependence on microscopic parameters

