Doping dependence of superconducting transition temperatures in alkali metal/ammonia intercalated FeSe

Daniel Guterding, Harald O. Jeschke, Peter J. Hirschfeld, and Roser Valentí Institut für Theoretische Physik

March 4, 2015

Superconductivity of iron selenide and derived materials

Figure : Noji et al., Physica C 504, 8 (2014)

Ab-initio calculations for lithium/ammonia intercalated FeSe

Idealized structure

- \blacksquare Li_x(NH_2)_y(NH_3)_zFe_2Se_2 with T_c \sim 44 K
- lattice parameters and FeSe layer from exp.

Burrard-Lucas et al., Nat. Mater. 12, 15 (2013)

SedImaier et al., JACS 136, 630 (2014)

- construct super cell with Li:Fe ratio close to exp.
- result: $Li_{0.5}(NH_3)Fe_2Se_2$, 0.25 e^- per Fe doping

Electronic band structure analysis

- full potential local orbital (FPLO) code
- band structure unfolding (Tomić, Jeschke, Valentí, PRB 90, 195121 (2014))
- projective Wannier functions (16-, 10-, 8- and 5-band models)
- simulate NH₂ with virtual crystal approximation (VCA)

Fermi surface within the 16-band model

Non-interacting susceptibility in the 8-band model

- non-interacting susceptibility reveals magnetic instabilities
- electron doping destroys $(\pi, 0)$ nesting
- no stripe AFM is to be excpected for electron doped intercalates
- agrees with neutron scattering exp.

Taylor et al., PRB 87, 220508 (2014)

RPA spin-fluctuation pairing in the 8-band model

Summary

- in 2D limit electron doping enhances T_c
- dimensionality and electron doping can be controlled through the interlayer chemistry
- increase of c-axis beyond 9 Å does not increase T_c because system is already 2D
- intercalates without hole pockets have low T_c because large DOS is somewhere below Fermi level
- published: Guterding et al., PRB 91, 041112(R) (2015)

Figure : Noji et al., Physica C **504**, 8 (2014)

Crystal structure and properties of lithium/ammonia intercalated FeSe

- lithium atoms are dissolved in liquid ammonia (NH₃)
- ammonia rich and ammonia poor crystals can be synthesized
- $Li_{0.56}(NH_2)_{0.53}(NH_3)_{1.19}Fe_2Se_2$ has $T_c = 39$ K and c = 10.3 Å
- $Li_{0.6}(NH_2)_{0.2}(NH_3)_{0.8}Fe_2Se_2$ has T_c = 44 K and c = 8.1 Å
- larger c-axis gives lower T_c
- [NH₂]⁻ is a radical, should oxidize Li
- charge doping is important!

Figure : SedImaier et al., J. Am. Chem. Soc. **136**, 630 (2014)

Simulation of NH₂ content within VCA

- VCA interpolates continously between atom with nuclear charge Z and atom with nuclear charge Z − 1 or Z + 1
- fractionally replacing N (Z = 7) by C (Z = 6) interpolates between neutral NH₃ and CH₃ radical
- use notation Li_{0.5}(NH₂)_{0.5-2r}(NH₃)_{0.5+2r}Fe₂Se₂
- r = {0.0, ..., 0.25} is the number of nominally doped e⁻/Fe
- VCA agrees well with explicit removal of H atoms
- H bands at Fermi level then prevent good fit of band structure

Band structure within the 16-band model

Summary of band structure and Fermi surface analysis

Importance of NH_2

- r = 0 gives electronic structure like undoped material
- NH₂ content indeed controls the doping level

$Li_{0.56}(NH_2)_{0.53}(NH_3)_{1.19}Fe_2Se_2$ (exp. ammonia rich)

T_c = 39 K and
$$c = 10.3$$
 Å

• r = 0.015, almost no electron doping

$Li_{0.6}(NH_2)_{0.2}(NH_3)_{0.8}Fe_2Se_2$ (exp. ammonia poor)

• has
$$T_c = 44$$
 K and $c = 8.1$ Å

• r = 0.2, strongly electron doped

Doping dependence of the SC pairing strength

- constant interaction parameters U = 1.35 eV, U' = U/2, J = J' = U/4
- pairing strength λ drops initially as nesting is destroyed, then increases with electron doping
- hole pockets are on the verge of disappearing
- electron doping increases DOS at the Fermi level
- leads to enhanced spin-fluctuations, i.e. stronger pairing
- e.g. K_xFe_{2-y}Se₂ has lower T_c because hole pockets are gone

Microscopic origin of the DOS enhancement

- shift of the bands is not rigid
- next-neighbor hopping in d_{xy} orbital is strongly reduced
- direct and indirect contributions to t₁ have different sign
- indirect process dominates at low doping
- states from Se are lowered in energy due to positive charge in the interlayer
- indirect hopping decreases, cancellation at maximum doping
- bandwidth reduction and Fermi level shift work together to enhance the pairing
- lower two figures adapted from Suzuki et al., PRL 113, 027002 (2014)

Relative importance of c-axis height and electron doping

- doping dependence was extracted based on ammonia poor compound
- ammonia poor compound has slight corrugation on the Fermi surface cylinders
- higher c-axis makes ammonia rich perfectly 2D
- ammonia rich compound has higher λ at identical doping level
- in reality it has lower T_c
- actual charge doping level makes the difference in the 2D limit
- FS becomes 2D with c-axis of ~ 9 Å

Tight binding+RPA formalism in a nutshell

$$\begin{split} \chi_{st}^{pq}(\vec{q}) &= -\frac{1}{N} \sum_{\vec{k},\mu,\nu} a_{\mu}^{s}(\vec{k}) a_{\mu}^{p*}(\vec{k}) a_{\nu}^{q}(\vec{k}+\vec{q}) a_{\nu}^{t*}(\vec{k}+\vec{q}) \frac{f(E_{\nu}(\vec{k}+\vec{q})) - f(E_{\mu}(\vec{k}))}{E_{\nu}(\vec{k}+\vec{q}) - E_{\mu}(\vec{k})} \\ & \left[(\chi_{spin}^{RPA})_{st}^{pq} \right]^{-1} = [\chi_{st}^{pq}]^{-1} - (U_{spin})_{st}^{pq} \\ \Gamma_{st}^{pq}(\vec{k},\vec{k}') &= \left[\frac{3}{2} U_{s} \, \chi_{s}^{RPA}(\vec{k}-\vec{k}') \, U_{s} + \frac{1}{2} U_{s} - \frac{1}{2} U_{c} \, \chi_{c}^{RPA}(\vec{k}-\vec{k}') U_{c} + \frac{1}{2} U_{c} \right]_{ps}^{tq} \\ \Gamma_{ij}(\vec{k},\vec{k}') &= \sum_{stpq} a_{i}^{t*}(-\vec{k}) a_{i}^{s*}(\vec{k}) \text{Re} \left[\Gamma_{st}^{pq}(\vec{k},\vec{k}') \right] a_{j}^{p}(\vec{k}') a_{j}^{q}(-\vec{k}') \\ & -\sum_{j} \oint_{C_{j}} \frac{dk'_{\parallel}}{2\pi} \frac{1}{4\pi\nu_{F}(\vec{k}')} \left[\Gamma_{ij}(\vec{k},\vec{k}') + \Gamma_{ij}(\vec{k},-\vec{k}') \right] g_{j}(\vec{k}') = \lambda_{i}g_{i}(\vec{k}) \end{split}$$

Graser, Maier, Hirschfeld, Scalapino, New Journal of Physics 11, 025016 (2009)

Other interesting talks

Z5.00004 : Generalized unfolding method, Friday 11:15 AM, Milan Tomić