Organische Supraleiter Seminar 'Einführung in die Supraleitung' Wintersemester 2012/13

Daniel Guterding

18. Januar 2013

Historische Einführung

Vorhersage organischer SL und deren Realisierung

- 1957 Entwicklung der BCS-Theorie als erste mikroskopische Theorie der Supraleitung
- \blacksquare 1964 schlägt William Little Mechanismus für Supraleitung in organischen Materialien mit T $_c\approx$ 2200 K vor
- 1973 erstes molekulares Metall TTF-TCNQ (sog. Ladungstransfersalz), aber noch keine Supraleitung
- \blacksquare 1980 erster organischer Supraleiter (TMTSF)_2PF_6 mit $T_c=0.9\,K$ unter leichtem Druck von $p=12\,kbar$
- \blacksquare 1991 erster Fullerensupraleiter K_3C_{60} mit $T_c=18\,K$
- $\blacksquare~2010$ erster Kohlenwasserstoffsupraleiter K_3Picen ebenfalls mit $T_c = 18 \, \text{K}$

W. Littles Vorschlag

Mechanismus

- Kernidee ist Nutzung des Isotopeneffekts der BCS-Supraleiter
- Sprungtemperatur hängt mit Kernmasse zusammen: $T_c \propto M^{-1/2}$
- verwende statt Gitterschwingungen elektronische Oszillationen
- Sprungtemperatur wächst etwa um Faktor 300 !

W. Littles Vorschlag

Modellsystem

- Kohlenstoffkette mit Doppelbindungen als leitfähiges Grundgerüst (Polyethin)
- polarisierbare
 Seitengruppen bilden
 Medium f
 ür elektronische
 Oszillationen
- entlang der Kohlenstoffkette propagierende Elektronen polarisieren Seitengruppe

Abbildung: W. Little, Phys. Rev. 134, S. A1416–A1424 (1964)

W. Littles Vorschlag

Wirkung

- vorgeschlagener Mechanismus konnte bis heute nicht experimentell beobachtet werden
- dennoch wichtiger Anschub f
 ür physikalische Forschung an organischen Materialien

Charakterisierung

- Kristalle aus organischen Molekülen
- zusammengesetzt aus Elektronendonor und Elektronenakzeptor
- Grundbausteine sind Modifikationen des TTF (Tetrathiafulvalen) als Donor-Moleküle
- elektronische Klassifizierung in Quasi-1D- und Quasi-2D-Materialien möglich
- hohe Sensitivität gegenüber Druck

Abbildung: G. Saito und Y. Yoshida, The Chemical Record 11, S. 124-145 (2010)

Quasi-1D-Materialien: Bausteine

- wichtigste Donatoren sind TMTTF (Tetramethyltetrathiafulvalen) und TMTSF (Tetramethyltetraselenfulvalen)
- Akzeptoren müssen Donormoleküle leicht oxidieren können, einfachstes Beispiel: Br
- Verhältnis Donor:Akzeptor in der Regel 2:1, z.B. (TMTTF)₂Br
- supraleitende Sprungtemperaturen T_c < 3K abhängig vom Akzeptor

Abbildung: G. Saito und Y. Yoshida, The Chemical Record 11, S. 124-145 (2010)

Quasi-1D-Materialien: Struktur

- Stapel von Donormolekülen (blau)
- π-Orbitale der S- bzw. Se-Atome dehnen sich senkrecht zur Stapelrichtung aus und erzeugen Überlapp zwischen Donormolekülen
- Akzeptormoleküle (rot) wirken isolierend, daher stark anisotrope Leitfähigkeit
- Druck erhöht Dimensionalität

Abbildung: J. Müller, ChemPhysChem 12, S. 1222-1245 (2011)

Quasi-1D-Materialien: T-p-Phasendiagramm

- (TMTSF)₂X und (TMTTF)₂X besitzen gemeinsames Phasendiagramm
- chemische Substitution ist äquivalent zu hydrostatischem Druck
- Supraleitung tritt nur mit erhöhter Dimensionalität auf, Peierls-Übergang muss unterdrückt werden

Abbildung: J. Wosnitza, Physikalische Blätter 56, Nr. 4, S. 41 (2000)

Quasi-1D-Materialien: Peierls-Übergang

- 1D-Metall ist instabil gegenüber Gitterverzerrung
- fasse benachbarte Atome zu Dimer zusammen, Brillouin-Zone halbiert sich, Isolator entsteht
- Energieabsenkung für Elektronen muss Energieverlust durch kleineren Atomabstand überkompensieren
- analoge Argumentation mit Absenkung magnetischer
 Energie für 1D-Heisenberg-Kette ergibt Spin-Peierls-Zustand

Abbildung: G. Grüner, Rev. Mod. Phys. 60, Nr. 4, S. 1129-1181 (1988)

Quasi-1D-Materialien: Spindichtewelle

- Peierls-Zustand ist 1D-Spezialfall einer Ladungsdichtewelle
- bei Spindichtewelle sind Ladungsträger zusätzlich nach Spins separiert
- k_F entspricht nicht notwendigerweise einem Abstand auf dem Gitter
- falls doch liegt ein Antiferromagnet vor

Abbildung: N. Toyota, M. Lang, und J. Müller, Low-Dimensional Molecular Metals (Springer-Verlag Berlin Heidelberg, 2007)

Quasi-1D-Materialien: Mott-Hubbard-Isolator

- Hubbard-Hamiltonian: $H = -\sum_{\langle i,j \rangle} \sum_{\sigma} \left(t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + h.c. \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$
- enthält vermutlich relevante Physik für Hoch-T_c-Supraleiter, mit Erweiterungen auch für organische Supraleiter anwendbar
- t_{ij} sind Elemente der Hüpfmatrix auf dem Gitter
- U ist die Coulombabstoßung auf jedem Gitterplatz
- für große Werte von U/t erfolgt Metall-Isolator-Übergang
- anschaulich: Elektronen sp
 üren gegenseitige Anwesenheit stark und m
 öchten sich daher m
 öglichst gleichm
 ä
 ßig verteilen
- Folge: Leitfähigkeit wird unterdrückt obwohl wegen teilweise gefüllter Bänder ein Metall vorliegen sollte

Quasi-1D-Materialien: Supraleitende Phase

- starke Typ-2-Supraleiter, GL-Parameter $\kappa \approx 500$
- senkrecht zu Akzeptorschicht GL-Kohärenzlänge von $\xi \approx 2,5$ nm, parallel bis zu 70 nm
- $\label{eq:london-Eindringtiefe} \mbox{London-Eindringtiefe bis zu} $\lambda \approx 40 \, \mu m$$
- kritische Felder stark anisotrop, maximale Unterdrückung der SL senkrecht zu Akzeptoren

Abbildung: (TMTSF)₂ClO₄ aus N. Toyota, M. Lang, und J. Müller, Low-Dimensional Molecular Metals (Springer-Verlag Berlin Heidelberg, 2007)

Quasi-2D-Materialien: Bausteine

- wichtigster Donor ist BEDT-TTF (Bisethyldithio-tetrathiafulvalen), abgekürzt ET
- Donor-Akzeptor-Verhältnis 2:1
- bisher mehr als 65 Supraleiter durch Variation der Akzeptoren
- Substitution von ¹H durch ²H ermöglicht Feineinstellung von T_c
- höchste supraleitende Sprungtemperatur unter Normaldruck: T_c = 12,3 K (κ-(d₈-ET)₂Cu(CN)[N(CN)₂])

• unter Druck:
$$T_c = 14,2 \text{ K}$$
 bei
 $p = 8,2 \text{ GPa} (\beta'-(\text{ET})_2 \text{ICl}_2)$

Abbildung: G. Saito und Y. Yoshida, The Chemical Record 11, S. 124-145 (2010)

Quasi-2D-Materialien: Struktur

- mit α, β, κ, etc. wird relative
 Anordnung der Donoren
 bezeichnet
- κ-Struktur bringt interessante Materialien hervor: Supraleiter mit T_c > 10 K, aber auch Magnete ohne Ordnung ('Spin-Liquid')

Abbildung: N. Toyota, M. Lang, und J. Müller, Low-Dimensional Molecular Metals (Springer-Verlag Berlin Heidelberg, 2007)

Quasi-2D-Materialien: Struktur

- Donor- und Akzeptormoleküle sind in Lagen angeordnet
- Lagen von Akzeptormolekülen (rot) wirken isolierend
- hohe Leitfähigkeit in der Ebene der Donormoleküle (blau)
- ET-Moleküle sind flach bis auf Ethylgruppen an den Enden

Abbildung: J. Müller, ChemPhysChem 12, S. 1222-1245 (2011)

Quasi-2D-Materialien: T-p-Phasendiagramm

- gemeinsames
 Phasendia gramm für
 κ-(ET)₂X Familie
- p ≈ 300 bar genügt für Isolator-Supraleiter-Übergang

Abbildung: J. Müller, ChemPhysChem 12, S. 1222-1245 (2011)

Quasi-2D-Materialien: Supraleitende Phase

- starke Typ-2-Supraleiter, Ginsburg-Landau-Parameter κ zwischen 10 und 300
- Kohärenzlängen senkrecht zu Donorlagen (0,3 bis 0,7 nm) deutlich kleiner als deren Abstand (1,5 nm)
- interner Josephson-Effekt, nachgewiesen durch Resonanz von Mikrowellenstrahlung
- starke Anisotropie in den kritischen Feldern
- Symmetrie des Ordnungsparameters auf s- oder d-Wellensymmetrie eingeschränkt (Spin-Singlet)
- Isotopeneffekt f
 ür Ersetzung von C- und S-Atomen

weitere organische Supraleiter

Fullerene

- Supraleitung entsteht erst durch Dotierung mit K, Cs oder Rb zu A₃C₆₀
- bisher BCS-artige Supraleitung angenommen, u.A. wegen Isotopeneffekt
- Cs₃C₆₀ kann in fcc- und bcc-Struktur synthetisiert werden
- beide Strukturen zeigen unter Druck Supraleitung mit $T_c = 35 \text{ K}$ bzw. 38 K
- bei Normaldruck und tiefen Temperaturen sind beide Strukturen Mott-Hubbard-Isolatoren

Abbildung: G. Saito und Y. Yoshida, The Chemical Record 11, S. 124-145 (2010)

weitere organische Supraleiter

Picen

- Supraleitung durch Dotierung mit K oder Rb
- erste Experimente zeigen Metall-Supraleiter-Übergang bei Normaldruck
- supraleitender Volumenanteil < 15%
- kürzlich Hinweise auf Mott-Isolator für ganzzahlige Dotierungen x = 1, 2, 3 in K_xPicen
- noch zu wenige experimentelle Daten

Abbildung: G. Saito und Y. Yoshida, The Chemical Record 11, S. 124-145 (2010)

Literatur I

- N. Toyota, M. Lang und J. Müller, Low-Dimensional Molecular Metals (Springer-Verlag Berlin Heidelberg, 2007)
- J. Müller, ChemPhysChem 12, S. 1222-1245 (2011)
- G. Saito und Y. Yoshida, The Chemical Record 11, S. 124-145 (2010)
- W. Little, Phys. Rev. 134, S. A1416–A1424 (1964)
- 📱 G. Grüner, Rev. Mod. Phys. 60, Nr. 4, S. 1129-1181 (1988)
- J. Wosnitza, Physikalische Blätter 56, Nr. 4, S. 41 (2000)
- S. Blundell, Magnetism in Condensed Matter (Oxford University Press, 2010)
 - Y. Iwasa, Nature 466, S. 191f (2010)

- A. Ganin et al., Nature 466, S. 221-225 (2010)
- M. Rosseinsky und K. Prassides, Nature 464, S. 39-41 (2010)
- R. Mitsuhashi et al., Nature 464, S. 76-79 (2010)
- A. Ruff et al., http://arxiv.org/abs/1210.4065
- B. Powell und R. McKenzie, Rep. Prog. Phys. 74, S. 1-60 (2011)