Microscopic modelling of exotic properties in frustrated systems: triangular and kagome lattices Project Report B2/B13, 9th Annual Retreat of SFB/TR49 Principal investigators: Roser Valentí, Kateryna Foyevtsova, Harald O. Jeschke

> Daniel Guterding Institut für Theoretische Physik

> > September 25, 2015

Organic charge transfer salts: Overview

ET = BEDT-TTF =

bis(ethylene-dithio)-tetrathiafulvalene is the electron donor

- ET molecules can be packed in different patterns
- α' -phase charge-ordered insulator
- κ-phase often superconducting
- features (ET)₂ dimers that donate one electron to acceptor layer
- often modelled by 1/2-filled anisotropic triangular lattice of dimers
- alternative is 3/4-filled individual molecule model

- Why does presence of α' -phase strongly enhance T_c ?
- microscopic hopping parameters from projective molecular Wannier functions
- charge ordering pattern in α' -layer influences electron hoppings in k-layer
- degree of frustration significantly enhanced for higher-T_c compounds

Influence of molecular conformations on the electronic structure of organic charge transfer salts

- ethylene endgroups in ET molecules can be in eclipsed or staggered configuration
- κ-(ET)₂Cu[N(CN)₂]Br undergoes MIT with endgroup tuning (J. Müller *et al.*)
- endgroups influence hopping amplitudes and Hubbard repulsion
- staggered endgroups have larger t'/t, U/t

Unconventional superconductivity in realistic models for organic charge transfer salts

- superconductivity likely mediated by spin-fluctuations
- symmetry of the order-parameter from RPA for the Hubbard model
- dimer model gives d_{xy}
- $\label{eq:constraint} \begin{tabular}{ll} \b$
- STS from Elmers group shows two-peak structure in LDOS of superconducting κ-Br
- naturally explained by s + d_{x²-y²} symmetry in molecule model

Guterding, Altmeyer, Jeschke, Valentí, in preparation

Diehl, Methfessel, Tutsch, Müller, Lang, Huth, Guterding, Altmeyer, Jeschke, Valentí, Jourdan, Elmers, in preparation 5/11

 $t_4/t_1 = 0.2$

Prediction of a strongly correlated Dirac metal

- Herbertsmithite ZnCu₃(OH)₆Cl₂ is a spin-liquid candidate
- replacing Zn²⁺ by Ga³⁺ shifts Fermi level to Dirac point
- Mott-transition suppressed by electron doping
- no charge-ordering present in DCA calculation
- competition between FM and f-wave SC predicted in vicinity of Dirac point
- material synthesis in Krellner group

Poster by Pascal Puphal, B4

Jeschke, Salvat-Pujol, Valentí, PRB 88, 075106 (2013)

Mazin, Jeschke, Lechermann, Lee, Fink, Thomale, Valentí, Nat. Commun. 5, 4261 (2014) 6 / 11

Search for Quantum spin liquids

- Barlowite Cu₄(OH)₆FBr has structure similar to Herbertsmithite, but Cu also on interlayer site
- no spin liquid because of significant interlayer couplings
- Kapellasite $ZnCu_3(OH)_6Cl_2$ predicted to be quantum paramagnet at $p \approx 8$ GPa

Iqbal, Jeschke, Reuther, Valentí, Mazin, Greiter, Thomale, arxiv:1506.03436 Jeschke, Salvat-Pujol, Gati, Hoang, Wolf, Lang, Schlueter, Valentí, PRB **92**, 094417 (2015) 7 / 11

Exotic states in new Kagome lattice materials: doping of Herbertsmithite and Barlowite

- all proposed modifications for Herbertsmithite are stable in DFT
- hole-doping generates ferromagnet with Fermi level at Dirac point
- spin-orbit coupling opens a gap, strongly correlated topological insulator
- prospect for Quantum Anomalous Hall effect at elevated temperatures
- doping Barlowite interlayer sites with nonmagnetic atoms could generate Quantum Spin Liquid
- only Mg-Barlowite is a stable modification (unstable: Li, Na, K, Ca, Zn, Cd, Hg)

Low-energy model for pyrochlore Lu₂V₂O₇: *ab-initio* Spin Hamiltonian

- Anomalous Thermal Hall effect of magnons measured
- hard to calculate effective spin-Hamiltonian directly with DFT
- new approach using exact diagonalization and subspace projection
- hopping parameters t_{iα,jβ} from projective Wannier functions
- spin-orbit coupling strength λ from fit to relativistic band structure

Low-energy model for pyrochlore $Lu_2V_2O_7$: exact diagonalization and projection

$$\begin{split} H &= \sum_{\langle ij \rangle} \sum_{\alpha \beta} \sum_{\sigma} t_{i \alpha, j \beta} d^{\dagger}_{i \alpha \sigma} d_{j \beta \sigma} + \lambda \sum_{i} \sum_{\alpha \beta} \sum_{\sigma \sigma'} \left[\langle i \alpha \sigma | \vec{L} \cdot \vec{S} | i \beta \sigma' \rangle d^{\dagger}_{i \alpha \sigma} d_{i \beta \sigma'} + h.c. \right] \\ &+ U \sum_{i} \sum_{\alpha} n_{i \alpha \uparrow} n_{i \alpha \downarrow} + U' \sum_{i} \sum_{\alpha \neq \beta} n_{i \alpha \uparrow} n_{i \beta \downarrow} + (U' - J_H) \sum_{i} \sum_{\alpha < \beta} \sum_{\sigma} n_{i \alpha \sigma} n_{i \beta \sigma} \\ &+ J_H \sum_{i} \sum_{\alpha \neq \beta} (d^{\dagger}_{i \alpha \uparrow} d^{\dagger}_{i \beta \downarrow} d_{i \alpha \downarrow} d_{i \beta \uparrow} + d^{\dagger}_{i \alpha \uparrow} d^{\dagger}_{i \alpha \downarrow} d_{i \beta \downarrow} d_{i \beta \downarrow} d_{i \beta \uparrow}), \end{split}$$

- scalar product L

 S
 depends on site, different local coordinate systems

 diagonalize one bond exactly
- ground state is ferromagnet with one electron per site in d_{z²} orbital
 evaluate J_{ii}, D_{ii}, K_{ii} in low-energy subspace
- \blacksquare ratio of DM and Heisenberg (for U=2.25 eV, $J_{H}=0.7$ eV): 0.25
- experiment between 0.32 and 0.18

$$H = \sum_{i < j} \left[J_{ij} \hat{S}_i \hat{S}_j + \hat{S}_i \hat{K}_{ij} \hat{S}_j + \vec{D}_{ij} (\hat{S}_i \times \hat{S}_j) \right] + E_0$$

Poster by Kira Riedl, B2/B13

Summary and Outlook

Organic charge transfer salts

- realistic tight-binding models, unconventional SC
- investigate magnetic ordering in κ-Cl, ferroelectricity

Kagome lattice systems

- predicted new spin-liquid candidates, correlated Dirac metal, correlated ferromagnetic topological insulator
- investigate interplay of correlations and topology

Pyrochlore lattice systems

- developed method to parametrize effective Hamiltonians
- extend to larger system size, compare to experiment

Contributors

Roser Valentí Kateryna Foyevtsova Harald O. Jeschke Michaela Altmeyer Vladislav Borisov Daniel Guterding Ryui Kaneko Kira Riedl Steve M. Winter

Appendix

Conversion from four-band to dimer model

•
$$t = \frac{1}{2}(t_2 + t_4)$$

• $t' = \frac{1}{2}t_3$
• $U = 2t_1$

Tight binding+RPA formalism in a nutshell

$$\begin{split} \chi_{st}^{pq}(\vec{q}) &= -\frac{1}{N} \sum_{\vec{k},\mu,\nu} a_{\mu}^{s}(\vec{k}) a_{\mu}^{p*}(\vec{k}) a_{\nu}^{q}(\vec{k}+\vec{q}) a_{\nu}^{t*}(\vec{k}+\vec{q}) \frac{f(E_{\nu}(\vec{k}+\vec{q})) - f(E_{\mu}(\vec{k}))}{E_{\nu}(\vec{k}+\vec{q}) - E_{\mu}(\vec{k})} \\ & \left[(\chi_{spin}^{RPA})_{st}^{pq} \right]^{-1} = [\chi_{st}^{pq}]^{-1} - (U_{spin})_{st}^{pq} \\ \Gamma_{st}^{pq}(\vec{k},\vec{k}') &= \left[\frac{3}{2} U_{s} \chi_{s}^{RPA}(\vec{k}-\vec{k}') U_{s} + \frac{1}{2} U_{s} - \frac{1}{2} U_{c} \chi_{c}^{RPA}(\vec{k}-\vec{k}') U_{c} + \frac{1}{2} U_{c} \right]_{ps}^{tq} \\ \Gamma_{ij}(\vec{k},\vec{k}') &= \sum_{stpq} a_{i}^{t*}(-\vec{k}) a_{i}^{s*}(\vec{k}) \text{Re} \left[\Gamma_{st}^{pq}(\vec{k},\vec{k}') \right] a_{j}^{p}(\vec{k}') a_{j}^{q}(-\vec{k}') \\ -\sum_{j} \oint_{C_{j}} \frac{dk'_{\parallel}}{2\pi} \frac{1}{4\pi\nu_{F}(\vec{k}')} \left[\Gamma_{ij}(\vec{k},\vec{k}') + \Gamma_{ij}(\vec{k},-\vec{k}') \right] g_{j}(\vec{k}') \\ &= \lambda_{i}g_{i}(\vec{k}) \end{split}$$